Matrix Infrared Spectra and Density Functional Theory Calculations of Manganese and Rhenium Hydrides

Xuefeng Wang and Lester Andrews*

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319 Received: February 14, 2003; In Final Form: March 26, 2003

Laser-ablated Mn and Re atoms react with H_2 upon co-condensation in excess argon and neon and in pure hydrogen to produce metal hydrides. The reaction products are identified through isotopic substitution (D₂, HD, and $H_2 + D_2$) and density functional theory calculations. The ⁷Σ⁺ ground state diatomic MnH is observed at 1493.3 cm⁻¹ in solid neon, 1486.4 cm⁻¹ in hydrogen, and 1477.9 cm⁻¹ in argon. The ReH molecule gives a sharp band at 1985.0 cm⁻¹ in argon, which is suggested to be the ⁵Σ⁺ ground state by DFT calculations. The MnH₂ molecule provides v_3 modes at 1600.8 cm⁻¹ in solid neon, 1598.0 cm⁻¹ in solid hydrogen, and 1592.3 cm⁻¹ in solid argon, and the analogous ReH₂ molecule absorbs at 1646.4 cm⁻¹ in solid argon. In addition MnH₂⁻ is observed at 1465.6 cm⁻¹ in solid neon. The bonding properties of the first row transition metal dihydrides are compared, and reaction mechanisms of Mn and Re with H₂ are discussed. The novel ReH₄ molecule absorbs at 2037.2 and 590.6 cm⁻¹. This work reports the first experimental evidence for neutral rhenium hydride molecules.

Introduction

Neutral rhenium hydrides are unknown experimentally although a number of anion containing compounds such as Mg₃-ReH₇, BaReH₉, KNaReH₉, and Rb₃ReH₁₀ have been prepared in the solid state and structurally characterized by infrared spectra and neutron diffraction.¹⁻⁶ The nonahydrorhenate anion, ReH_9^{2-} , was the first soluble homoleptic hydrometalate to be unambiguously characterized.⁶ Rhenium can also form classical and nonclassical hydride complexes, including octahedral ReH_{6}^{3-} , which are significant in organometallic chemistry and catalytic process.⁷⁻⁹ The intensities of Re-H stretching vibrations in rhenium hydride complexes are extremely weak and are not observed spectroscopically. Finally, reactions of naked rhenium with molecular hydrogen have not yet been investigated experimentally although theoretical calculations have suggested that the Re(⁶S) ground state does not insert into H₂ spontaneously.¹⁰ Similar theoretical studies have been done for the reactions of rhodium with H₂, and a large energy barrier for insertion of ground state Rh(⁴F) into H₂ was predicted,¹¹ but in contrast the spontaneous insertion was observed in lowtemperature matrixes, where the spin-orbit coupling is believed to lower the reaction barrier.¹²

Reactions of several first and second row transition metal atoms with molecular hydrogen have been investigated in the gas phase and low-temperature noble gas matrix samples, which are fundamental to understanding bonding reactivity, and chemical properties of metal hydrides. Sweany has reviewed this earlier work.¹³ For example, MnH₂ has been synthesized by co-condensing manganese and hydrogen atoms in solid argon¹⁴ or Mn and H₂ followed by photolysis in solid xenon.¹⁵ Similar experiments have been done with chromium.^{16,17} The MnH₂ molecule was first proposed to be bent with a 117 \pm 30° bond angle, but the same authors suggested in a later paper that the MnH₂ molecule might well be linear,^{14,16} as found for FeH₂.^{18,19} Hence, the structure of MnH₂ remains unclear.

The reactions of high-melting point metals with molecular hydrogen are difficult to investigate because these metal atoms cannot been generated by traditional thermal vaporization methods. Pulse-laser ablation is one of the most promising sources for high-melting metal atoms. A principle advantage of this technique is that more reactive metal atoms are produced in a very short time (10 ns) with very little heat load onto the cold matrix substrate during sample deposition. Using this method second and third row transition metal hydrides have been synthesized for infrared investigation.^{12,20–26}

In this paper we report the reactions of laser-ablated rhenium and manganese atoms with molecular hydrogen in solid argon, neon, hydrogen, and deuterium during condensation at 3.5 K. The vibrational frequencies and structures of rhenium and manganese hydrides are determined using isotopic substitution in infrared spectra and density functional theory (DFT) calculations. This is the first observation of neutral rhenium hydride molecules. Finally, the reaction mechanisms and the nature of the bonding for the first row metal dihydrides are discussed.

Experimental and Computational Methods

The matrix infrared experiments for reactions of laser-ablated manganese and rhenium atoms with small molecules have been described in detail previously.^{27–29} Laser-ablated metal atoms from manganese (Johnson Matthey) or rhenium (Goodfellow) targets were co-deposited with H₂, D₂, and HD in excess neon, argon, and pure hydrogen and deuterium at 3.5 K using a Sumitomo Heavy Industries RDK-205D Cryocooler. The Nd: YAG laser fundamental (1064 nm, 10 Hz repetition rate with 10 ns pulse width) was used and the laser energy was varied from 20 to 40 mJ/pulse. Normal hydrogen and deuterium (Matheson), HD (Cambridge Isotopic Laboratories), and selected mixtures were used in different experiments. FTIR spectra were recorded at 0.5 cm⁻¹ resolution on a Nicolet 750 with 0.1 cm⁻¹ accuracy using an MCTB detector. Matrix samples were annealed at different temperatures, and selected samples were

^{*} Corresponding author. Electronic mail: lsa@virginia.edu.

TABLE 1: Infrared Absorptions (cm⁻¹) Observed from Reactions of Manganese and Rhenium with Dihydrogen in Excess Argon, Neon, Hydrogen, and Deuterium

argon			neon		pure					
H ₂	HD	D_2	H ₂	HD	D ₂	H ₂	D_2	identification		
$Mn + H_2$										
						3191.7	2303.7	$MnH_2 (\nu_1 + \nu_3)$		
						2916.9	2118.4	MnH (2ν)		
			1636		1177	1633.7	1174.1	(H_2MnH)		
1592.3	1615.5,	1155.1	1600.8	1621.7	1159.4	1598.0	1157.1	MnH_2		
	1161.6			1166.7						
1539		1116	1544	1552	1109			$(Mn_x - MnH_2)^a$		
				1120						
1477.9	1477.9	1066.0	1493.3	1493.3	1077.2	1486.4	1072.7	MnH		
	1066.0			1077.2						
			1465.6	1517.0	1073.8			MnH_2^-		
				1093.8						
			1344		979	1334.9	969.1	Mn_2H_4		
1162.0		849.7	1162.6	1120.0	847.4	1161.6	845.9	$((MnH)_2)^a$		
			1089.7		786.1			?		
			877.4	876.0	875.0			$((H_2)MnO)^a$		
				Re + H	2					
2037.3	2037.2	1459.4						ReH_4		
	2043.8									
	1460.0									
	1465.0									
1985.0	1985.0	1423.5						ReH		
	1423.7									
			1977.0		1426.6		1428.0	Re_xH_y		
1848.4		1330.8	1864.7		1341.4		1340.5	$\text{Re}_x H_y^-$		
1648.4		1184.6						ReH ₂ (site)		
1646.4	1748.2	1182.6						ReH ₂		
	1232.1									
590.6								ReH_4		

^a Tentative.

subjected to photolysis by a medium-pressure mercury arc lamp (Phillips, 175 W) with globe removed.

Density functional theoretical calculations determined the structures and frequencies of expected manganese hydrides and rhenium hydrides using the Gaussian 98 program.³⁰ The BPW91 and B3LYP functionals,^{31–34} the 6-311++G(d,p) basis set for H atom,³⁵ modified Wachters and Hay all-electron set for manganese atom,³⁶ and SDD pseudopotential for rhenium atom were employed.³⁷ All the geometrical parameters were fully optimized and the harmonic vibrational frequencies were obtained analytically at the optimized structures.

Results

Infrared spectra are presented for manganese and rhenium atom reactions with H_2 , D_2 , $H_2 + D_2$, and HD in excess argon, neon, and pure deuterium, and absorptions for reaction products are listed in Table 1. Density functional theoretical calculations of manganese and rhenium hydrides and hydrogen complexes assist in the identification of these molecules.

Infrared Spectra of Mn + H₂. Manganese atoms react with H₂ during condensation in excess neon at 3.5 K to give product absorptions at 1600.8, 1493.3, 1465.6, and 1162.6 cm⁻¹. These bands exhibited different behavior on $\lambda > 380$ nm and $\lambda > 240$ nm photolysis. With D₂ substitution the bands shift to 1159.4, 1077.2, 1073.8, and 847.4 cm⁻¹ (Figures 1 and 2). Mixed H₂ + D₂ gave the same H₂ and D₂ bands, and the HD reaction exhibited strong new features in the upper Mn–H stretching region at 1621.7 cm⁻¹ and the lower Mn–D stretching region at 1166.7 cm⁻¹.

In the argon matrix two major bands at 1592.3 and 1477.9 $\rm cm^{-1}$ observed after deposition increased on annealing to 15 and 25 K and shifted to 1155.1 and 1066.0 $\rm cm^{-1}$ with D₂ (Figure

Figure 1. Infrared spectra in the $1650-1050 \text{ cm}^{-1}$ region for laserablated Mn co-deposited with H₂ or HD in excess neon at 3.5 K: 3% H₂ in neon and Mn (a) co-deposited for 50 min, (b) after $\lambda > 380 \text{ nm}$ photolysis, (c) after 240–380 nm photolysis, and (d) after annealing to 11 K; 3% HD in neon and Mn (e) co-deposited for 50 min, (f) after annealing to 7.5 K, and (g) after 240–380 nm photolysis.

3). Substitution with HD gave new bands at 1615.5 and 1161.6 cm⁻¹ and the same 1477.9 and 1066.0 features as listed in Table 1. A weak band at 1663.3 cm⁻¹ is due to HMnOH from the reaction of trace H₂O with manganese atom,³⁸ and a very weak 833.3 cm⁻¹ band (A = 0.001) is due to MnO probably from surface oxide on the target.³⁹ Finally, the Ar_nH⁺ and Ar_nD⁺ bands were observed at 903.1 and 643.0 cm⁻¹ in these experiments.⁴⁰

In the pure deuterium matrix a strong 1157.1 cm^{-1} band with 1174.1 and 1163.8 cm⁻¹ satellites and 1072.7 cm⁻¹ absorption

Figure 2. Infrared spectra in the 1200–750 cm⁻¹ region for laserablated Mn co-deposited with D₂ or HD in excess neon at 3.5 K: 3% D₂ in neon and Mn (a) co-deposited for 50 min, (b) after $\lambda > 380$ nm photolysis, (c) after 240–380 nm photolysis, and (d) after annealing to 11 K; 3% HD in neon and Mn (e) co-deposited for 50 min, (f) after annealing to 7.5 K, and (g) after 240–380 nm photolysis.

Figure 3. Infrared spectra in the 1650-1450 and 1200-1050 cm⁻¹ regions for laser-ablated Mn co-deposited with H₂, D₂, and HD in excess argon at 3.5 K: 3% H₂ in argon and Mn (a) co-deposited for 50 min, (b) after annealing to 16 K, (c) after $\lambda > 240$ nm photolysis, and (d) after annealing to 25 K; 2% HD in argon (e) co-deposited for 50 min, (f) after annealing to 20 K, (g) after 240-380 nm photolysis, and (h) after annealing to 30 K; 3% D₂ in argon (i) co-deposited for 50 min, (j) after annealing to 16 K, (k) after $\lambda > 240$ nm photolysis, and (l) after annealing to 25 K; 2% HD in argon (m) co-deposited for 50 min, (n) after annealing to 20 K, (o) after $\lambda > 240$ nm photolysis, and (l) after annealing to 20 K, (o) after $\lambda > 240$ nm photolysis, and (p) after annealing to 30 K.

are dominant (Figure 4). The 1157.1 cm⁻¹ band doubled intensity on $\lambda > 380$ nm photolysis. Other bands at 2303.7, 2118.4, 969.1, and 845.9 cm⁻¹ were also observed in this sample. The corresponding pure hydrogen experiment employed lower laser energy, and the weaker product bands (Figure 4) are listed in Table 1.

Infrared Spectra of Re + H₂. Reactions of rhenium atoms with H₂ in excess argon gave strong absorption at 1646.4 cm⁻¹ with a 1660.8 cm⁻¹ satellite and a weak band at 1985.0 cm⁻¹ (Figure 5). Deuterium counterparts appeared at 1182.6 and 1423.5 cm⁻¹ (Figure 6). Annealing to 15 K increased the 1985.0 cm⁻¹ band, slightly decreased the 1646.4 cm⁻¹ band, and produced a new band at 2037.2 cm⁻¹, which shifted to 1459.4

Figure 4. Infrared spectra in the 1650–1200 and 1200–800 cm⁻¹ regions for laser-ablated Mn co-deposited with pure normal H₂ or D₂ at 3.5 K: Mn (a) co-deposited with 60 STPcc of H₂, (b) after annealing to 6.2 K, (c) after $\lambda > 380$ nm photolysis, (d) after 240–380 nm photolysis, and (e) after annealing to 6.4 K; Mn (f) co-deposited with 60 STP cc of D₂, (g) after annealing to 7.5 K, (h) after $\lambda > 380$ nm photolysis, (i) after 240–380 nm photolysis, (i) after 240–380 nm photolysis, S, (i) after 240–380 nm photolysis, and (j) after annealing to 8.5 K.

cm⁻¹ with D₂. UV photolysis reversed the band intensities, i.e., increased the 1646.4 cm⁻¹ band and decreased the 1985.0 and 2037.2 cm⁻¹ bands. Experiments with H₂ + D₂ gave the same major bands, but with HD the 1646.4 cm⁻¹ band (Re–H stretching region) shifted to 1748.2 cm⁻¹ and the 1182.6 cm⁻¹ band (Re-D stretching region) to 1232.1 cm⁻¹ (Figures 5 and 6).

The reaction products trapped in neon and pure deuterium are complicated. Two broad bands at 1977.0 and 1864.7 cm⁻¹ in the Re–H region and at 1426.6 and 1341.4 cm⁻¹ in Re–D region were observed in a neon matrix. These bands are not significantly changed on annealing and photolysis. The product bands observed at 1428.0 and 1340.5 cm⁻¹ in pure deuterium are comparable to neon bands. Finally, only very weak absorption was detected near 941 cm⁻¹ for ReO₂, which indicates minimum sample contamination.⁴¹

Calculations. DFT calculations are done for manganese and rhenium hydrides, and the results are summarized in Tables 2-6. The ground state of MnH is predicted to be $^{7}\Sigma^{+}$ at the B3LYP/ 6-311++G(d,p) level of theory, and the computed 1.733 Å bond length and 1525.6 cm⁻¹ Mn–H stretching frequency are close to the gas-phase experimental values of 1.731 Å and 1548.0 cm⁻¹ (harmonic) and 1490.4 cm⁻¹ (anharmonic), respectively.⁴²⁻⁴⁶ This is in agreement with previous ab initio calculations on MnH.^{47,48} At the same level the ${}^{5}\Sigma^{+}$ state is 19.6 kcal/mol higher in energy, the Mn-H bond length is reduced by 0.14 Å, and the frequency is increased to 1612.4 cm^{-1} . BPW91/6-311++G-(d,p) calculations also give very good predications for the Mn-H bond length and stretching frequency for the $^7\Sigma^+$ electronic state; however, the predicted total energies for both $^{7}\Sigma^{+}$ and $^{5}\Sigma^{+}$ are very close (0.2 kcal/mol difference). The larger 6-311++G(3df,3pd) basis set gives basically the same results for both functionals.

For ReH the ground state is predicted to be ${}^{5}\Sigma^{+}$ at both B3LYP and BPW91 levels of theory, and the ${}^{7}\Sigma^{+}$ electronic state lies respectively 22.7 kcal/mol (B3LYP) and 16.1 kcal/mol (BPW91) higher in energy. This is in agreement with one but not another previous calculation on ReH.^{49,50} Significantly the calculated frequencies for the two states are substantially different: ${}^{5}\Sigma^{+}$ values are near 2100 cm⁻¹ with ${}^{7}\Sigma^{+}$ values near

TABLE 2: Bond Lengths, Vibrational Frequencies, and Intensities Calculated for MnH, MnH⁻, and ReH

	state bond	relative energy	frequencies, cm ⁻¹						
method	(A)	(kcal/mol)	(intensities, km/mol)						
MnH									
BPW91/6-311++G(d,p)	$^{7}\Sigma^{+}$, 1.710	0.0	MnH: 1548.3 (540)						
			MnD: 1105.1 (275) ^a						
	$5\Sigma^{+}, 1.590$	-0.2	MnH: 1739.1 (20)						
			MnD: 1241.2 (10)						
BPW91/6-311++G(3df,3pd)	$\Sigma^{+}, 1.711$	0.0	MnH: 1522.0 (528)						
	5 5 ± 1,500	0.2	MnD: 1086.3 (269)						
	521, 1.588	=0.2	MnH: $1/2/.5(1/)$						
D2I $VD/(211 + C(1))$	75+ 1 722	0.0	MnD: 1233.0 (9)						
B3LYP/6-311++G(a,p)	2, 1.733	0.0	MnH: 1525.6 (506)						
	$5\Sigma^{+}$ 1 500	± 10.6	MnD: 1088.9 (258)						
	521, 1.590	+19.0	MinH: $1012.4(195)$						
B3I VP/6 311++ $C(3df 3nd)$	$7\Sigma^{+}$ 1 735	0.0	MnH: $1507.0(496)$						
B3E1170-311++O(3u1,3pd)	2,1.755	0.0	MnD: $1075.6(253)$						
	$5\Sigma^{+}$ 1 644	+19.0	MnH: $1604.5(189)$						
	2,1.044	119.0	MnD: $1145.2(96)$						
			WIID: 1143.2 (90)						
DDW $(01/(211) + C(1))$	MnH	26.5	M. H. 1224 (825)						
BPW91/6-311++G(d,p)	°2°, 1.722	-26.5	MinH : $1334.(825)$						
P2I VD/6 211++ $C(d_n)$	$6\Sigma^{+}$ 1 760	-22.4	MnD : $952.2 (405)^{\circ}$						
$D_{2}D_{1}D_{2}D_{2}D_{2}D_{2}D_{2}D_{2}D_{2}D_{2$	2,1.700	23.4	$M_{\rm m} D^{-1}$: 011.0 (405)						
			WIID . 911.0 (495)						
	ReH								
BPW91/6-311++G(d,p)/SDD	⁵ Σ ⁺ , 1.644	0.0	ReH: 2099.1 (22)						
	75+ 1 700		ReD: $1488.8(11)^c$						
	21, 1.798	+16.1	ReH: 1602.1 (643)						
$DDW(01/(C_{2})) + C(2+f_{2}) + O(DD)$	$5\Sigma^{+}$ 1 642	0.0	ReD: $1136.3(324)^{a}$						
BPW91/6-311++G(301,3pd)/SDD	2, 1.042	0.0	Refl: $2092.5(20)$						
	$7\Sigma^{+}$ 1 707	+15.5	ReD. 1464.0 (10) ReH: $1613.1 (633)$						
	2,1.797	115.5	$P_0 D_1 = 1144 \pm (218)$						
B3I YP/6-311++ $G(d n)$ /SDD	$5\Sigma^{+}$ 1 641	0.0	ReH: $2110.0(28)$						
D3E11/0-311++G(d,p)/SDD	2,1.041	0.0	ReD: $1/96.6(14)$						
	$7\Sigma^{+}$, 1.813	+22.7	ReH: 1545.1 (648)						
	_ , 11010		ReD: 1095.9 (326)						
B3LYP/6-311++G(3df,3pd)/SDD	$5\Sigma^{+}, 1.640$	0.0	ReH: 2101.6 (25)						
	· · · ·		ReD: 1490.6 (13)						
	$^{7}\Sigma^{+}$, 1.812	+22.3	ReH: 1559.6 (637)						
			ReD: 1106.2 (321)						

 $a'(s^2)$ after annihilation is 12.0000. $b'(s^2)$ after annihilation is 8.7500. $c'(s^2)$ after annihilation is 6.0002. $d'(s^2)$ after annihilation is 12.0000.

Figure 5. Infrared spectra in the 2080–1630 cm⁻¹ region for laserablated Re co-deposited with H₂ or HD in excess argon at 3.5 K: 2% H₂ in argon and Re (a) co-deposited for 50 min, (b) after annealing to 15 K, (c) after $\lambda > 240$ nm photolysis, and (d) after annealing to 25 K; 3% HD in argon and Re (e), (f) after annealing to 15 K, (g) after $\lambda >$ 240 nm photolysis, and (h) after annealing to 30 K.

1600 cm⁻¹. The $\langle s^2 \rangle$ expectation values (Table 2) are appropriate for the states calculated.

Figure 6. Infrared spectra in the $1500-1150 \text{ cm}^{-1}$ region for laserablated Re co-deposited with D₂ or HD in excess argon at 3.5 K: 2% D₂ in argon and Re (a) co-deposited for 50 min, (b) after annealing to 17 K, (c) after $\lambda > 240$ nm photolysis, and (d) after annealing to 25 K; 3% HD in argon and Re (e), (f) after annealing to 15 K, (g) after $\lambda > 240$ nm photolysis, and (h) after annealing to 30 K.

The manganese and rhenium dihydrides were computed at the same levels of theory. The MnH_2 molecule is predicted to be the $^{6}A_1$ ground state with a 1.669 Å Mn-H bond length and

TABLE 3: Geometries, Vibrational Frequencies, and Intensities Calculated for MnH₂ and MnH₂⁻

method	state	relative energy (kcal/mol)	geometry (Å, deg)	frequencies, cm ⁻¹ (modes; intensities, km/mol)
BPW91	⁶ A ₁	0.0	MnH: 1.669 HMnH: 156.2	MnH ₂ : 1691.2 (a ₁ ; 17), 1625.3 (b ₂ ; 646), 413.4 (a ₁ ; 184) MnD ₂ : 1197.7 (9), 1169.0 (335), 297.2 (95) MnHD: 1659.2 (309), 1182.7 (195), 359.9 (140)
	$^{6}\Sigma_{g}^{+}$	0.6	MnH: 1.681	MnH ₂ : 1695.3 ($\sigma_{\rm s}$; 0), 1602.0 ($\sigma_{\rm u}$; 867), 365.0i ($\pi_{\rm u}$; 306 × 2)
	${}^{4}\mathbf{B}_{2}^{\circ}$	28.7	MnH: 1.571 HMnH: 107.8	MnH ₂ : 1805.9 (a ₁ ; 46), 1796.5 (b ₂ ; 160), 718.7 (a ₁ ; 68)
	${}^{4}A_{1}$	38.6	MnH: 1.659 HMnH: 160.1	MnH ₂ : 1716.9 (a ₁ ; 9), 1388.5 (b ₂ ; 7954), 387.9 (a ₁ ; 190)
	$5\Sigma_{g}^{+}$	-18.3	MnH: 1.694 HMnH: 180.0	MnH ₂ ⁻ : 1548.6 (σ_g ; 0), 1402.6 (σ_u ; 451), 359.6 (π ; 2 × 5) MnD ₂ ⁻ : 1095.5 (0), 1009.6 (218), 258.8 (2 × 5) MnHD ⁻ : 1483.5 (184), 1044.9 (150), 313.9 (2 × 5)
B3LYP ^a	$^{6}\Sigma_{g}^{+}$	0.0	MnH: 1.692	MnH ₂ : 1697.3 (σ_g ; 0), 1621.2 (σ_u ; 759), 240.8 (π_u ; 339 × 2) MnD ₂ : 1200.8 (0), 1167.0 (397), 173.2 (175 × 2) MnHD: 1661.0 (350), 1182.4 (227), 209.9 (257)
	${}^{4}B_{2}$	38.1	MnH: 1.579 HMnH: 111.7	MnH ₂ : 2352.9 (b ₂ ; 1887), 1782.6 (a ₁ ; 55), 741.2 (a ₁ ; 69)
	${}^{4}A_{2}$	44.3	MnH: 1.592 HMnH: 102.9	MnH ₂ : 1847.2 (b ₂ ; 115), 1772.4 (a ₁ ; 52), 593.1 (a ₁ ; 68)
	⁵ A ₁	-17.3	MnH: 1.689 HMnH: 165.4	MnH ₂ ⁻ : 1557.7 (a ₁ ; 2), 1429.3 (b ₂ ; 452), 396.7 (a ₁ ; 11) MnD ₂ ⁻ : 1102.1 (1), 1028.5 (218), 285.5 (8) MnHD ⁻ : 1499.4 (191), 1059.6 (145), 344.2 (10)

^a Basis set: 6-311++G(d,p) for H and Wachters-Hay for Mn.

TABLE 4: Geometries, Vibrational Frequencies, and Intensities Calculated for KeH_2 and

method	state	relative energy (kcal/mol)	geometry (Å, deg)	frequencies, cm ⁻¹ (modes; intensities, km/mol)
BPW91 ^a	⁶ A ₁	0.0	ReH: 1.745	ReH ₂ : 1874.5 (a ₁ ,43), 1717.7 (b ₂ ; 463), 648.4 (a ₁ ; 10)
			HReH: 146.0	ReD ₂ : 1326.9 (22), 1221.0 (233), 460.7 (5)
				ReHD: 1803.6 (214), 1266.9 (167), 562.2 (8)
	$6\Sigma_{g}^{+}$	3.3	ReH: 1.787	ReH ₂ : 1853.7 (σ_g ; 0), 1600.4 (σ_u ; 1158), 745.5i (π_u ; 243 × 2)
	${}^{4}\mathrm{B}_{1}$	7.3	ReH: 1.651	ReH ₂ : 2073.7 (a ₁ ; 27), 2061.3 (b ₂ ; 86), 738.0 (a ₁ ; 29)
			HReH: 112.5	
	${}^{6}\Sigma_{u}^{+}$	50.1	ReH: 1.770	ReH ₂ : 1672.9 (σ_g ; 0), 1339.0 (σ_u ; 1158), 793.6 (π_u ; 243 × 2)
	⁵ A ₂	-11.7	ReH: 1.768	ReH ₂ ⁻ : 2008.1 (b ₂ ; 2008.1), 1696.2 (a ₁ ; 137), 439.4 (a ₁ ; 1)
			HReH: 145.6	
B3LYP ^a	⁶ A ₁	0.0	ReH: 1.753	ReH ₂ : 1871.8 (a ₁ ; 43), 1697.8 (b ₂ ; 572), 586.5 (a ₁ ; 24)
			HReH: 147.8	ReD ₂ : 1325.0 (22), 1206.9 (289), 416.8 (12)
				ReHD: 1794.3 (253), 1257.0 (210), 508.4 (19)
	$^{6}\Sigma_{g}^{+}$	3.2	ReH: 1.787	ReH ₂ : 1865.6 (σ_g ; 0), 1597.1 (σ_u ; 1160), 583.7i (π_u ; 226 × 2)
	${}^{4}B_{2}$	-1.4	ReH: 1.648	ReH ₂ : 2107.9 (b ₂ ; 138), 2098.5 (a ₁ ; 42), 801.8 (a ₁ ; 23)
			HReH: 114.1	
	${}^{6}\Sigma_{u}^{+}$	47.3	ReH: 1.770	ReH ₂ : 1680.5 (σ_{g} ; 0), 1331.1 (σ_{u} ; 1150), 802.2 (π_{u} ; 3 × 2)

^{*a*} Basis set: 6-311++G(d,p) and SDD pseudopotential for Re.

with a slightly bent 156.2° H–Mn–H bond angle at the BPW91/ 6-311++G(d,p) level (Table 3). Linear MnH₂ ($^{6}\Sigma_{g}^{+}$) is calculated to be only 0.6 kcal/mol higher in energy, but imaginary frequencies are found for the degenerate H–Mn–H bending mode. Two bent quartet MnH₂ structures lie 28.7 and 38.6 kcal/ mol higher in energy. With the B3LYP functional only the linear $^{6}\Sigma_{g}^{+}$ ground state is located for MnH₂, in agreement with early and recent reports, 51,52 and the two quartet states lie much higher in energy. Finally, very recent CCSD calculations find MnH₂ to be linear. 53

Similar calculations are reported for ReH₂ with the BPW91 and B3LYP functionals (Table 4). With the SDD pseudopotential employed for Re, the ⁶A₁ state with a 146.0° H–Re–H bond angle is predicted to be the ground state, and the linear ${}^{6}\Sigma_{g}^{+}$ state with imaginary bending frequencies is about 3 kcal/mol higher in energy. Another linear ${}^{6}\Sigma_{u}^{+}$ state is found with real frequencies, but it is 50 kcal/mol higher in energy.

Higher manganese hydrides are calculated to provide a guide for reaction products as H_2 moieties are associated with MnH and MnH₂ (Table 5). The hydrogen complexes, (H₂)MnH and (H₂)MnH₂, are obtained instead of MnH₃ and MnH₄, respectively, as found in calculations for V and Cr hydrides.^{54,55} The BPW91 functional predicts that ⁵B₁, ⁵A₁, and ⁵A₂ (H₂)MnH states are 11–22 kcal/mol higher than the ⁵B₂ state. The B3LYP functional gives similar results in that ⁵B₂ is the ground state by 3 kcal/mol over H₂ + MnH and 3–20 kcal/mol over the above three (H₂)MnH states. Note that the total energy of (H₂)-MnH is lower than that of MnH + H₂ but that (H₂)MnH₂ is higher than MnH₂ + H₂. Because the MnH₂ molecule is a sextet state, sextet states for (H₂)MnH₂ are computed but these are repulsive. More rigorous CCSD calculations find a *C*_{2ν} H₂MnH molecule.⁵³ The higher rhenium hydrides, ReH₃ (*C*₃) and ReH₄ (*D*_{2d}), are computed at the same levels of theory starting with dihydrogen complexes (Table 6), and in contrast, hydride structures are converged. ReH₄ is slightly distorted from tetrahedral symmetry in the ²A₁ ground state at the DFT level, and the ⁴A₂ state is slightly higher in energy.

States for the dimanganese species Mn_2H_2 and Mn_2H_4 were calculated with BPW91; an ${}^{11}A_g$ rhombic ring (MnH)₂ was 5 kcal/mol more stable than the two nonet states. The Mn_2H_4 molecule converged to a stable nonet spin state D_{2d} structure with real frequencies (Table 5), a 2.17 Å Mn–Mn bond, 124.6° H–Mn–H angles, a short Mn–H₂ distance of 1.680 Å, and a long MnH₂ distance of 2.040 Å.

 TABLE 5: Geometries, Vibrational Frequencies, and Intensities Calculated for Higher Mangenese Hydrides at the BPW91

 Level^a

molecule	state	relative energy (kcal/mol)	geometry (Å, deg)	frequencies, cm ⁻¹ (modes, intensities, km/mol)
$(H_2)MnH(C_{2\nu})$	⁵ B ₂	-11^{b}	MnH: 1.641	2126 (a ₁ ; 556), 1699 (a ₁ ; 205), 1608 (b ₂ ; 18),
			MnH': 1.693	955 (a ₁ ; 41), 504 (b ₂ ; 77), 301 (b ₁ ; 131)
			H'H': 0.940	
$(H_2)MnH_2(C_{2v})$	${}^{4}A_{2}$	$+15.0^{\circ}$	MnH: 1.619	1897.9 (a ₁ ; 544), 1817.9 (a ₁ ; 0), 1781.2 (b ₁ ; 31), 1778.6 (b ₂ ; 31), 1006.8
				(a ₂ ; 0), 959.2 (a ₁ ; 0), 675.1 (a ₁ ; 812), 454.3 (b ₂ ; 22); 454.1 (b ₁ , 22)
			MnH': 1.620	
			HH: 1.025	
			H'H': 1.026	
$(MnH)_2 (C_{2h})$	$^{11}A_g$	-46^{d}	MnH: 1.843	1284 (a _u ; 75), 1232 (a _g ; 0), 1148 (b _u ; 144)
	-		HMnH: 96.6	753 $(a_g; 0), 421 (b_u; 112), 269 (a_g; 0)$
$Mn_{2}H_{4}(D_{2d})$	⁹ X	-13^{e}	MnH: 1.680	1539 (a_1 ; 0), 1526 (b_2 ; 19), 1463 (e; 237 × 2)
			MnMn: 2.176	763 (b ₁ ; 0), 605 (e; 6×2), 476 (a ₁ ; 0)
			HMnH: 124.6	299 (a_1 ; 0), 286 (b_2 ; 228), 259 (e; 12 × 2)
			Mn'H: 2.040	$[1091 (0), 1081 (10), 1048 (120)]^{f}$
				$[1533 (10), 1462 (237), 1086 (5), 1049 (120)]^{g}$
				$[1503 (110), 1495 (125), 1069 (69), 1065 (68)]^h$

^{*a*} Basis set: Wachters-Hay for Mn and 6-311++G(d,p) for H. ^{*b*} Energy relative to H_2 + MnH. ^{*c*} Energy relative to H_2 + MnH₂. ^{*d*} Energy relative to 2 MnH. ^{*e*} Energy relative to 2 MnH₂. ^{*f*} Mn₂D₄. ^{*g*} MnH₂MnD₂. ^{*h*} MnHDMnHD.

TABLE 6:	Geometries.	Vibrational Free	uencies, and	Intensities	Calculated i	for ReH	and	ReH	₁ ^a
	Geometrics	The second reco	fuctions, unit	HITCHISTOR	Curculater .	LOI ILUII	,	TTOTAL	4

······	-1-1-	relative energy	geometry	frequencies, cm^{-1}
molecule (symm)	state	(Kcal/mol)	(A, deg)	(modes, intensities, km/mol)
$\operatorname{ReH}_3(C_s)$	³ A′	0.0	BPW91/6-3 ReH: 1.645 ReH': 1.649 H'ReH': 111.6	11++G(d,p)/SDD ReH ₃ : 2114.8 (a'; 15), 2092.7 (a'; 78), 2091.2 (a''; 82) 725.9 (a'; 29), 490.0 (a'; 78), 312.7 (a''; 62) ReD ₃ : 1498.4 (9), 1484.9 (42), 1484.6 (39), 515.2 (15)
	⁵ A′	0.8	ReH: 1.646	348.6 (39), 221.6 (31) ReH ₃ : 2119.2 (a'; 34), 1891.3 (a'; 60), 1711.8 (a"; 438), 773.0 (a'; 6), 259.0 (a'; 76), 505.2i (a"; 1)
	_		ReH': 1.740 H'ReH':146.0	
$\operatorname{ReH}_4(D_{2d})$	$^{2}A_{1}$	0.0	ReH: 1.649 HReH: 108.2	ReH ₄ : 2116.2 (a ₁ ; 0), 2096.6 (e; 76 \times 2), 2093.5 (b ₂ ; 102) 777.5 (a ₁ ; 0), 673.9 (b ₂ ; 62), 626.0 (b ₁ ; 0), 584.8 (e; 72 \times 2) ReD ₄ : 1496.9 (0), 1489.1 (39 \times 2), 1485.8 (52), 550.0 (0) 480.1 (31), 442.8 (0), 416.9 (37) ReH ₂ D ₂ : 2104.9 (49), 2096.0 (74), 1491.4 (28), 1489.9 (42) 724.2 (22), 547.7 (62), 541.1 (0), 506.5 (24), 462.1 (45)
	${}^{4}A_{2}$	3.9	ReH: 1.691 HReH: 71.0	$\begin{array}{l} \text{ReH}_{4:} (22), 347.7 (63), 341.1 (0), 500.5 (24), 402.1 (43) \\ \text{ReH}_{4:} (2016.9 (a_1; 0), 1948.6 (e; 51 \times 2), 1948.5 (b_2; 166) \\ 911.9 (b_1; 0), 507.5 (a_1; 0), 467.5 (e; 27 \times 2), 452.7 (b_2; 45) \end{array}$
$\operatorname{ReH}_{3}(C_{s})$	³ A′	0.0	B3LYP/6-3 ReH: 1.652 ReH': 1.640 HReH': 110.4 H'ReH':86.6	11++G(d,p)/SDD ReH ₃ : 2145.1 (a'; 55), 2116.1 (a''; 63), 2102.9 (a'; 133) 698.8 (a''; 21), 684.8 (a'; 69), 341.1 (a'; 12) ReD ₃ : 1521.8 (33), 1500.8 (32), 1491.9 (63), 495.5 (11) 486.6 (35), 242.0 (6)
	⁵ A′	1.0	ReH: 1.646 ReH': 1.745 HReH': 106.2	ReH ₃ : 2130.3 (a'; 50), 1900.9 (a'; 67), 1708.1 (a''; 568), 732.5 (a'; 13), 227.9 (a'; 113), 486.3i (a''; 2)
ReH ₄ (<i>D</i> _{2d})	² A ₁	0.0	H'ReH':147.6 ReH: 1.649 HReH: 110.5	ReH ₄ : 2146.2 (a ₁ ; 0), 2120.8 (b ₂ ; 152), 2119.2 (e; 120×2) 769.6 (a ₁ ; 0), 643.6 (b ₂ ; 76), 600.2 (e; 84×2), 527.0 (b ₁ ; 0) ReD ₄ : 1518.2 (0), 1505.6 (62 × 2), 1505.5 (78), 544.4 (0) 458.4 (39), 427.3 (43 × 2), 372.8 (0) ReH ₂ D ₂ : 2133.6 (74), 2119.3 (117), 1511.9 (41), 1506.6 (65), 719.4 (25), 560.9 (73), 488.7 (32), 476.2 (53) 455.2 (0)
	⁴ A ₂	4.9	ReH: 1.688 HReH: 75.9	ReH ₄ : 2043.1 (a ₁ ; 0), 1989.2 (b ₂ ; 200), 1953.7 (e; 86×2) 879.1 (b ₁ ; 0), 582.9 (a ₁ ; 0), 475.5 (b ₂ ; 19), 396.2 (e; 47×2)

^a Basis set: 6-311++G(d,p) and SDD pseudopotential for Re.

Finally, the MnH⁻, MnH₂⁻, and ReH₂⁻ molecular anions were computed, and these are also listed in the tables.

Discussion

The new product absorptions will be identified and assigned from isotopic shifts and comparison to DFT frequency calculations. **MnH.** The sharp 1477.9 and 1066.0 cm⁻¹ argon matrix bands observed for Mn with H₂ and D₂, respectively, increase on 20 K annealing, decrease slightly on $\lambda > 240$ nm photolysis, restore on 25 K annealing, and then decrease on subsequent annealing. Precisely the same bands are observed with the HD reagent, which demonstrates that a single H(D) atom is involved and indicates the MnH and MnD assignments. The MnH/MnD =

1477.9/1066.0 = 1.3864 ratio is appropriate for a metal-hydride vibration. Our observations are in agreement with the Weltner report¹⁴ within experimental measurement error.

The MnH and MnD molecules exhibit a modest blue shift in solid neon to 1493.3 and 1077.2 cm⁻¹, respectively, (ratio 1.3863) (Figures 1 and 2). Again the same bands are observed with HD. In neon these bands decrease slightly on annealing to 9 K. The sharp 1072.7 cm⁻¹ absorption in pure deuterium intermediate between the argon and neon matrix values is assigned to MnD with the pure hydrogen MnH counterpart at 1486.4 cm⁻¹ (ratio 1.3859). Even though MnH is a high-spin ($^{7}\Sigma^{+}$) species, interaction with the hydrogen host is minimal.

Weaker bands at 2916.9 and 2118.4 cm⁻¹ track with the stronger 1486.4 and 1072.7 cm⁻¹ fundamental bands and are due to the corresponding overtones. The absorbances are 2916.9 (0.0038), 1486.4 (0.293), 2118.4 (0.0005), and 1072.7 cm⁻¹ (0.060). The harmonic anharmonic vibrational constants are therefore determined: $2 \times 1486.4 - 2916.9 = 55.9$ cm⁻¹ = $2\omega_e x_e$ and $\omega_e = 1542.3$ cm⁻¹ for MnH whereas $2 \times 1072.7 - 2118.4 = 27.0$ cm⁻¹ = $2\omega_e x_e$ and $\omega_e = 1099.7$ cm⁻¹ for MnD. These constants are slightly smaller than gas-phase values: for MnH solid H₂ red shifts ω_e by 5.7 cm⁻¹ (0.37%) and $\omega_e x_e$ by 0.8 cm⁻¹ (2.7%), and for MnD solid D₂ red shifts ω_e by 2.8 cm⁻¹ (0.25%) and $\omega_e x_e$ by 0.4 cm⁻¹ (2.9%). Hence the H₂ (D₂) matrix environment affects the anharmonic potential constant.

The matrix assignments for MnH are in accord with the gasphase⁴² fundamental frequency, 1490.4 cm⁻¹, where the neon matrix affects a 2.9 cm⁻¹ blue shift, the hydrogen matrix a 4.0 cm⁻¹ red shift, and the argon matrix a 12.5 cm⁻¹ red shift. These modest matrix shifts are in line with vibrational frequency shifts for other molecules.⁵⁶ However, the larger red matrix shift in argon is in accord with the greater polarization and interaction of ⁷Σ⁺ MnH with argon as described for the Fermi contact interaction.⁴⁴ Finally, the experimental MnH frequencies are in agreement with the prediction of the most recent quantum chemical calculations for the ground ⁷Σ⁺ state, as described in a recent review.⁴⁸ The 1530 cm⁻¹ MCPF value is representative.⁴⁷ Our BPW91 and B3LYP calculations (Table 2) find similar frequencies for MnH.

MnH₂. Infrared spectra of MnH₂ have been reported following photolysis of Mn and H2 in solid xenon¹⁵ and cocondensation of Mn and H atoms in excess argon.¹⁴ The present argon matrix spectrum is in agreement with that of Weltner et al. except for $0.5-1.7 \text{ cm}^{-1}$ differences in grating spectrometer measurement.¹⁴ The identification of MnH₂ is confirmed by the spectra of MnHD and MnD₂. The MnH₂/MnD₂ antisymmetric stretching frequency ratio 1592.3/1155.1 = 1.3785 and the ratio for the Mn-H/Mn-D stretching modes of MnHD 1615.5/ 1161.6 = 1.3908 are both indicative of metal-hydride vibrations. The former antisymmetric mode is more anharmonic than the bond stretching modes in MnHD. The observation of two new absorptions with HD and their relationship to the strong MnH₂ and MnD₂ product bands demonstrates that two equivalent H(D) atoms are involved in the vibration. Thus the strong 1565 cm⁻¹ band assigned to MnH₂ in solid xenon¹⁵ sustains a large red shift by this polarizable medium. The weaker 1591 cm⁻¹ absorption is probably due to MnH₂ molecules on surface sites with weaker matrix interactions.

Our neon matrix spectrum gives blue-shifted bands at 1600.8 cm^{-1} for MnH₂ and 1159.4 for MnD₂ (ratio 1.3807), and at 1621.7 and 1166.7 cm^{-1} for the Mn–H and Mn–D stretching modes of MnHD (ratio 1.3900). The appearance of MnHD absorptions above the antisymmetric modes of MnH₂ and MnD₂

points to the observation of a higher, unobserved symmetric mode. In the neon matrix case the symmetric mode is predicted for MnH₂ at $1601 + 2(1622 - 1601) = 1642 \text{ cm}^{-1}$ (the Mn-H mode for MnHD should be near the median of $a_1 (\sigma_g)$ and $b_2 (\sigma_u)$ MnH₂ modes).

Very strong absorptions at 1598.0 and 1157.1 cm⁻¹ in pure H₂ and D₂, respectively, with ratio 1.3810, are shifted only 2.8 and 2.4 cm⁻¹ from the above neon matrix values, and these bands are due to the antisymmetric stretching modes of MnH₂ and MnD₂ isolated in solid dihydrogen with little chemical interaction. The MnHD counterparts are observed at 1617.7 and 1163.8 cm⁻¹ in pure D₂. The weaker 3191.7 and 2303.7 cm⁻¹ absorptions track with the very strong absorptions (0.80 and 0.70% relative absorbance, respectively) and are assigned to the $\nu_1 + \nu_3$ combination bands of MnH₂ and MnD₂. As the ν_1 modes of MnH₂ and MnD₂ are deduced to be 42 and 18 cm⁻¹ higher than the ν_3 modes in solid neon, and the $\nu_1 + \nu_3$ combination better accounts for the expected anharmonicity than a possible $2\nu_3$ overtone assignment. The lack of an obvious ν_1 fundamental is in accord with a linear MnH₂ molecule.

The identification of MnH₂ is further confirmed by quantum chemical calculations. First, MnH₂ is predicted to be linear at the CCSD(T) level in a ${}^{6}\Sigma_{g}{}^{+}$ state with 1646.5 cm⁻¹ σ_{g} and 1608.9 cm⁻¹ σ_{u} frequencies corrected for anharmonicity.⁵³ These calculated frequencies are extremely close to our 1642 and 1600.8 cm⁻¹ neon matrix values. Second, our DFT calculations fit almost as well. The BPW91 method converges to a slightly bent (156.2°) ${}^{6}A_{1}$ state with uncorrected 1691.2 and 1625.3 cm⁻¹ a_{1} and b_{2} harmonic frequencies, respectively, and the linear ${}^{6}\Sigma_{g}{}^{+}$ state is only 0.6 kcal/mol higher with uncorrected 1695.3 and 1602.0 cm⁻¹ σ_{g} and σ_{u} frequencies (Table 3). The B3LYP calculation converges to a ${}^{6}\Sigma_{g}{}^{+}$ ground state with uncorrected 1697.3 and 1621.2 cm⁻¹ harmonic frequencies.

 MnH_2^- . The new 1465.6 cm⁻¹ neon matrix band decreases slightly on annealing and is virtually destroyed by 240–380 nm photolysis. The photosensitive D₂ counterpart at 1073.8 cm⁻¹ defines a 1465.6/1073.8 = 1.3649 ratio, which is slightly lower than the ratio (1.3807) for MnH₂. Photosensitive HD counterparts at 1517.0 and 1093.8 cm⁻¹ are in accord with assignment to a MnH₂ vibration and the photolysis behavior suggests the MnH₂⁻ anion observed by 488 nm laser photodetachment in the gas phase.⁵⁷

Our B3LYP calculations predict a strong antisymmetric stretching fundamental for a slightly bent ${}^{5}A_{1}$ ground state of MnH_{2}^{-} near 1430 cm⁻¹. This result is in general agreement with CCSD calculations, which describe a linear MnH_{2}^{-} anion with strong σ_{u} fundamental at 1488 or 1430 cm⁻¹ depending on the basis set.⁵³ The agreement between calculated and observed frequencies invites assignment of the photosensitive 1465.6 cm⁻¹ absorption to MnH_{2}^{-} .

The HD counterpart absorptions at 1517.0 and 1093.8 cm⁻¹ strongly support this assignment. Our DFT calculations find the symmetric mode above the antisymmetric mode, and thus both stretching modes of MnHD⁻ should be higher than the σ_u modes of MnH₂⁻ and MnD₂⁻, as found for MnH₂ and MnD₂, but in the anion case the mode separations are larger. Our BPW91 calculation predicts the Mn–H and Mn–D stretching modes of MnHD⁻ to be 73 and 32 cm⁻¹ higher than the antisymmetric stretching modes of MnH₂⁻ and MnD₂⁻, respectively, in excellent agreement with the observed 51 and 20 cm⁻¹ separations. Thus, the unobserved σ_g mode of MnH₂⁻ is deduced to be 1466 + 2(51) = 1568 cm⁻¹ from observed frequencies. Finally, our DFT calculations estimate a 17–18 kcal/mol

electron affinity for MnH_2 , which is slightly higher than the 10.2 kcal/mol experimental value.⁵⁷

The slightly lower H/D frequency ratio for MnH_2^- as compared to MnH_2 implies greater anharmonicity in the vibration instead of a structural difference. Although our B3LYP calculation finds slightly bent species, recent CCSD computations give linear structures for both. High-resolution spectra of FeH₂, which is isoelectronic with MnH_2^- , characterize a linear molecule.¹⁹

Higher Manganese Hydrides. Four weak bands at 1636, 1544, 1344, and 1162.6 cm⁻¹ in solid neon remain to be assigned. These bands increase on photolysis, which increases MnH and MnH₂ so dihydrogen complexes or aggregates of these molecules must be considered. Our DFT calculations find a (H₂)-MnH complex, but higher level calculations characterize a H₂-MnH hydride species with C_{2v} symmetry.⁵³ However, both predict the strongest infrared band in the high 1600 cm⁻¹ region. Accordingly, we tentatively assign the 1636 cm⁻¹ absorption to an H₂MnH species, which can reasonably be expected in this system.¹⁴ A small yield of this product is observed in pure H₂ at 1633.7 cm⁻¹.

The 1544 cm⁻¹ band exhibits the characteristics of a MnH₂ vibration: shift to 1109 cm⁻¹ with D₂ (1.392 ratio) and higher HD counterparts at 1552 and 1120 cm⁻¹, analogous to MnHD. Our DFT calculations find (H₂)MnH₂ to have higher energy than H₂ and MnH₂. This is in line with our observation of MnH₂ and MnD₂ in solid H₂ and D₂, respectively, only 4–2 cm⁻¹ lower than in solid neon, which shows that MnH₂ does not form a dihydrogen complex. The bent CrH₂ molecule, however, readily complexes with dihydrogen.⁵⁵ The 1544 cm⁻¹ band increases on annealing and is tentatively assigned to a weak Mn_x–MnH₂ complex where the MnH₂ structure is essentially unchanged.

The broad 1344 and 979 cm⁻¹ neon matrix absorptions exhibit sharper 1334.9 and 969.1 cm⁻¹ solid hydrogen and deuterium counterparts, respectively. Photolysis ($\lambda > 380$ nm) increases the 1334.9 cm^{-1} band slightly and the 969.1 cm^{-1} band 3-fold. The H/D isotopic frequency ratios, 1.373 and 1.378 are appropriate for a MnH₂ vibration, and the large yield of MnH₂ in pure hydrogen and deuterium invites consideration of Mn₂H₄. Our DFT calculations find a stable D_{2d} structure with a very strong e mode at 1463 cm^{-1} , which, scaled by 0.92, fits the observed bands. Furthermore, the mixed isotopic pattern shows that four slightly coupled hydrogens are involved in this mode, and the four satellite bands fit the pattern computed for MnHDMnHD (Table 5). A 50/50 pure H₂/D₂ experiment gave strong new 1337.6 and 969.4 cm^{-1} bands with weaker 1350.9, 1367.8 cm⁻¹ and 976.8, 982.3 cm⁻¹ satellites, and the same pattern was observed with pure HD.

The 1162.6 cm⁻¹ band is in the region expected for bridged hydrogen vibrations. This band shifts to 847.4 cm⁻¹ with D₂ (H/D ratio 1.3720), but HD counterparts are masked by other absorptions. The calculation of (MnH)₂ is a formidable theoretical problem. Using BPW91, we find an ¹¹A_g ground state with the strongest infrared absorption at 1148 cm⁻¹ and a weaker band at 1284 cm⁻¹. The 1162.6 cm⁻¹ band is tentatively assigned to (MnH)₂.

ReH. The sharp bands for Re with H_2 and D_2 in argon at 1985.0 and 1423.5 cm⁻¹, respectively, increase on 15 K annealing, decrease on photolysis, and increase more on 25 K annealing (Figure 5), but decrease on final 30 K annealing (not shown). This behavior is analogous to that found for MnH in solid argon. With the HD reagent, the above bands were observed essentially unshifted, which indicates that a single

H(D) atom is involved and suggests the ReH and ReD diatomic molecules. The H/D frequency ratio 1985.0/1423.5 = 1.3945 is slightly higher than found for MnH, which is appropriate for the vibration of H(D) against a heavier metal atom.

Assignment of the 1985.0 cm⁻¹ solid argon band to ReH is supported by quantum chemical calculations. Both BPW91 and B3LYP calculations find the ${}^{5}\Sigma^{+}$ state lower than the ${}^{7}\Sigma^{+}$ state (by 16.1 and 22.7 kcal/mol, respectively), but the harmonic frequency is substantially higher, in the 2100 cm⁻¹ region, for the ${}^{5}\Sigma^{+}$ state. This is consistent with the 1985.0 cm⁻¹ fundamental in solid argon. Unfortunately, we are not able to isolate ReH or ReH₂ in solid neon: we believe the heat load on the condensing sample is too great for rapid freezing because higher laser energy is required to ablate Re than Mn. Although ReH has not yet been observed in the gas phase, the present argon matrix observations point to a gas-phase fundamental near 2000 cm⁻¹ for the ${}^{5}\Sigma^{+}$ ground state.

ReH₂. The sharp 1646.4 and 1182.6 cm⁻¹ bands for Re with H₂ and D₂ in argon show little change on 15 K annealing, increase slightly on broadband photolysis (other experiments show more increase than Figure 5c), and decrease slightly on 25 K annealing. Using the HD reagent, the above bands were extremely weak, but new 1748.2 and 1232.1 cm⁻¹ bands exhibited the same behavior (Figures 5 and 6). This is the pattern found for MnH₂ where the symmetric Mn–H stretching mode is above the antisymmetric Mn–H stretching mode, and the two new bands with HD confirm the identification of ReH₂. The unobserved symmetric stretching mode is predicted near 1850 cm⁻¹, substantially higher than the strong antisymmetric stretching mode.

The 1646.4 cm⁻¹ assignment to the strong b₂ Re–H stretching fundamental of ReH₂ is supported by our DFT calculations, which find a slightly bent ⁶A₁ ground state with b₂ mode predicted at 1717.7 cm⁻¹ (BPW91) and 1697.8 (B3LYP). Furthermore the much weaker, unobserved a₁ mode is predicted higher at 1874.5 cm⁻¹ (BPW91) and 1871.8 cm⁻¹ (B3LYP), in good agreement with extrapolation from the spectrum of ReHD. In addition, our BPW91 calculation predicts ReHD frequencies 85.9 and 45.9 cm⁻¹ higher than ReH₂ and ReD₂, respectively, in very good agreement with the 101.8 and 49.5 cm⁻¹ observed differences. It is possible that future higher level calculations will find ReH₂ to be linear; however, the strong infrared active fundamental should be observed at 1660 ± 10 cm⁻¹ in the gas phase.

Our calculations find a bent quartet state slightly higher with BPW91 and slightly lower energy with B3LYP, but the b_2 frequency is above 2000 cm⁻¹. This is clearly not compatible with the observed spectrum of ReH₂.

ReH₄. The next most intense absorption in the argon matrix spectrum at 2037.2 cm⁻¹ increased on annealing to 15 K, decreased on photolysis and increased on further annealing. With D_2 this band shifts to 1459.4 cm⁻¹, giving the 1.3959 H/D isotopic frequency ratio. The HD and $H_2 + D_2$ experiments gave doublets at 2037.2, 2043.8 cm⁻¹ and 1460.0, 1465.0 cm⁻¹. This isotopic pattern of four Re-H(D) stretching modes is due to a tetrahydride species as described for ZrH₄, HfH₄,²⁰ WH₄,²⁵ and YH₄^{-.26} The above band pairs are assigned to symmetric and antisymmetric ReH2 and ReD2 stretching fundamentals, respectively, in ReH₂D₂. The Re-H and Re-D stretching frequencies of the tetrahydride are calculated by DFT (Table 6). The structure of ReH₄ is converged to D_{2d} symmetry instead of T_d , and as a result the degenerate ν_3 mode (t₂) in T_d symmetry is split into a b_2 mode at 2093.5 cm⁻¹ and degenerate e mode at 2096.6 cm⁻¹ with the BPW91 functional. However, one band

TABLE 7: Calculated Structures and Argon Matrix M–H Stretching Frequencies for the First Row Transition Metal Dihydrides^a

	ScH_2	TiH_2	VH_2	CrH ₂	MnH_2	FeH ₂	CoH_2	NiH ₂
ground state M-H (Å) HMH (deg) cal ν_3 (b ₂) cal ν_1 (a ₁) exp ν_3 exp ν_1	$^{2}A_{1}$ 1.815 116 ^b 1506 1528	³ A ₁ 1.749 122 1578 1592 1435 ^c	${}^{4}B_{2}$ 1.692 118 1615 1639 1508 ^c 1532	${}^{5}B_{2}$ 1.638 110 1663 1672 1614 ^d 1651	⁶ A ₁ 1.669 156 ^e 1625 1691 1592 ^e	${}^{5}A_{1}$ 1.620 146 ^f 1694 1745 1661 ^f	${}^{4}\text{B}_{2}$ 1.566 140 1736 1800 1684 ^s	$^{1}A_{1}$ 1.425 77 2119 2125 1969 ^h 2007

^{*a*} Calculated at BPW91/6-311++G(d,p) level. ^{*b*} Reference 26. ^{*c*} Xiao, Z. L.; Hauge, R. H.; Margrave, J. L. *J. Phys. Chem.* **1991**, *95*, 2696. See also ref 62. ^{*d*} References 17 and 55. ^{*e*} Reference 14, this work. MnH₂ is probably linear; see ref 53. ^{*f*} Reference 18. FeH₂ is probably linear; see ref 19. ^{*s*} Billups, W. E.; Chang, S.-C.; Hauge, R. H.; Margrave, J. L. *J. Am. Chem. Soc.* **1995**, *117*, 1387. ^{*h*} Reference 60.

observed at 2037.2 cm⁻¹ for ReH₄ in solid argon, and the HD isotopic spectrum support approximate T_d symmetry. It is possible that the structure of ReH₄ is slightly distorted from T_d to D_{2d} , and that the band splitting is overestimated by theoretical calculations. Finally, a weaker 590.6 cm⁻¹ band tracks with the 2037.2 cm⁻¹ band in three experiments, and it is assigned to the strong bending mode predicted at 584.8 cm⁻¹ by DFT.

Other Absorptions. Absorptions appeared on annealing at 1874.6 and 1848.4 cm⁻¹ in solid argon. A neon counterpart was found at 1864.7 cm⁻¹ and a pure deuterium counterpart at 1340.5 cm⁻¹. These bands are probably due to polymetal hydride species that cannot be identified. The observation⁵⁸ of stable ReH₉²⁻ at 1870 cm⁻¹ and the strongest mode of ReH₂⁻ calculated at 2008 cm⁻¹ by DFT further suggests that rhenium hydride molecular anions may be involved. Stable anions such as ReH₄⁻ and ReH₆⁻ have been computed.⁵⁹

Bonding Considerations. As shown in Table 7 on the basis of the BPW91/6-311++G(d,p) calculations the MH₂ bond lengths decrease and the frequencies generally increase except for MnH₂ as atomic number increases. However, the bond angles for metal dihydrides are quite diverse. The early metal dihydrides (ScH₂, TiH₂, VH₂, and CrH₂) favor bond angles around 110-120°, but close-to-linear structures are found for MnH₂ (156°), FeH₂ (146°), and CoH₂ (141°). However, for NiH₂ the bond angle is reduced to 77°, which is in excellent agreement with recent observations and computations of the Weltner group for the ${}^{1}A_{1}$ state,⁶⁰ although the ${}^{3}\Delta_{g}$ state is found to be slightly lower in energy⁶¹ and NiH₂ is thought to be linear from the photoelectron spectrum of NiH2^{-.57} Different hybrid prototypes must be considered here.^{47b} The optimal bond angles for sp and sd hybrids are 180° and 90°, respectively. For the early transition metals sd hybridization is more favorable but a mixture of 3d, 4s, and 4p is involved in the bonding. For MnH₂ sp hybridization is formed and the same bonding characters are expected for FeH₂ and CoH₂. In this case it seems d orbitals maintain highspin, which retains a favorable exchange energy. Note a contamination from d character in the bonding orbital is not avoidable, which leads to a near-linear structure. By contrast, the bond angle is reduced to 77° in the ¹A₁ state for NiH₂, in near agreement with other calculations,52 indicating sd hybridization rather than sp, and more d than s character is involved in this bond. Recall that this bond angle is reduced to 29° for PdH₂, where no s orbital is involved and the molecule is essentially a Pd(H₂) complex.²¹

Note that the antisymmetric frequency for the third row dihydride ReH₂ (1646 cm⁻¹) is higher than that for the first row dihydride MnH₂ (1592 cm⁻¹ in argon). The same relationship is found for CrH₂ (1601 cm⁻¹)⁵⁵ and WH₂ (1832 cm⁻¹ in neon),²⁵ and for TiH₂ (1435 cm⁻¹)⁶² and HfH₂ (1622 cm⁻¹ in argon).²⁰ This undoubtedly arises from the effect of relativistic contraction not counterbalanced by shell expansion, which lead

to stronger bonds and higher vibrational frequencies for the third row hydrides. 63

Reaction Mechanisms. Insertion of ground state Re into H_2 is exothermic by 12 kcal/mol (reaction 1) calculated at the BPW91 level, which is in near agreement with the CAS-MCSCF

$$\operatorname{Re} ({}^{6}\mathrm{S}) + \mathrm{H}_{2} \rightarrow \operatorname{ReH}_{2} ({}^{6}\mathrm{A}_{1}) \qquad \Delta E = -12 \text{ kcal/mol} \quad (1)$$

prediction (18 kcal/mol);¹⁰ however, reaction 1 is not spontaneous in this low-temperature matrix experiment. Theoretical calculations suggest that there is a large 100 kcal/mol energy barrier for this reaction, but that the a^6D excited state of the Re atom can avoid this barrier and insert into H₂.¹⁰ In our experiments this insertion reaction is induced by broadband photolysis, which can access the a^6D excited state⁶⁴ near 14 200 cm⁻¹.

Similar insertion occurs in the manganese atom reaction with H₂, which is exothermic by 13 kcal/mol. Reaction 2 can be induced by $\lambda > 380$ nm photolysis, in solid neon. However, in

$$Mn (^{6}S) + H_{2} \rightarrow MnH_{2} (^{6}A_{1}) \qquad \Delta E = -13 \text{ kcal/mol} \qquad (2)$$

solid argon, annealing to 20 K clearly increases the MnH₂ and MnD₂ absorptions. However, Ozin and McCaffrey¹⁵ found that thermal Mn atoms co-deposited with H₂ in xenon gave no reaction product, but irradiation at 285 nm in the ⁶P \leftarrow ⁶S resonance transition formed MnH₂. It is therefore likely that the growth of MnH₂ on annealing in solid argon is due to successive atom combination reactions 3 and 4 as MnH and MnH₂ are clearly formed on annealing.

$$Mn (^{6}S) + H (^{2}S) \rightarrow MnH (^{7}\Sigma^{+})$$
(3)

MnH
$$(^{7}\Sigma^{+})$$
 + H $(^{2}S) \rightarrow$ MnH₂ $(^{6}A_{1})$ (4)

The ReH₂ intermediate further reacts with H₂ to give ReH₄, reaction 5. This exothermic reaction proceeds spontaneously in the low-temperature matrix and shows no significant activation

$$\operatorname{ReH}_{2}({}^{6}\mathrm{A}_{1}) + \operatorname{H}_{2} \rightarrow \operatorname{ReH}_{4}({}^{2}\mathrm{A}_{1}) \qquad \Delta E = -26 \text{ kcal/mol}$$
(5)

$$MnH_{2}(^{6}A_{1}) + H_{2} \rightarrow (H_{2})MnH_{2}(^{4}A_{2})$$
$$\Delta E = 15 \text{ kcal/mol} (6)$$

energy requirement. In contrast, a possible reaction channel of MnH_2 with H_2 to give (H_2) MnH_2 (${}^{4}A_2$) is endothermic by 15 kcal/mol, and MnH_4 (${}^{2}A_1$) lies 44 kcal/mol higher in energy. Accordingly, no further reaction of MnH_2 with H_2 was observed in neon, argon, and pure hydrogen, and MnH_2 is the dominant species. This is in marked contrast to CrH_2 , which readily

complexes with dihydrogen.^{54,55} In addition, we find with a 50/ $50 H_2/D_2$ mixture that laser-ablated Mn reacts preferentially with H_2 as the MnH and MnH₂ bands are 4 times stronger than the MnD and MnD₂ absorptions. The small yield of MnHD shows that reaction 4 participates.

In the laser-ablation process the endothermic reaction of Re and Mn atoms with H_2 gives ReH and MnH, respectively, and these reactions are activated by excess energy in the laser-ablated metal atoms.⁶⁵

Re
$$(^{6}S)$$
 + H₂ \rightarrow ReH $(^{5}\Sigma)$ + H $\Delta E = 48$ kcal/mol (7)

$$Mn (^{6}S) + H_{2} \rightarrow MnH (^{7}\Sigma) + H \qquad \Delta E = 54 \text{ kcal/mol} \quad (8)$$

The MnH is trapped in argon, neon, and pure hydrogen, and a small amount of further reaction with H_2 is observed on annealing: reaction 9 is estimated to be exothermic at both BPW91 and B3LYP levels of theory. It is possible that reaction to form MnH₃ requires a large activation energy.

$$MnH (^{7}\Sigma^{+}) + H_{2} \rightarrow (H_{2})MnH (^{5}B_{2})$$
$$\Delta E = -11 \text{ kcal/mol} (9)$$

Absorptions due to ReH and ReD are observed in solid argon; however, ReH₃ is not spectroscopically identified although reaction 10 is energetically feasible.

$$\operatorname{ReH}(^{5}\Sigma^{+}) + \operatorname{H}_{2} \to \operatorname{ReH}_{3}(^{3}\mathrm{A}') \qquad \Delta E = -19 \text{ kcal/mol}$$
(10)

Finally, the exothermic dimerizations of MnH and MnH₂ proceed although both appear to require activation by photolysis. In the case of MnH₂ a large reduction in MnH₂ angle accompanies the dimerization process. Our BPW91 calculations suggest a D_{2d} structure with a single Mn–Mn bond for Mn₂H₄.

$$2\text{MnH} (^{7}\Sigma^{+}) \rightarrow (\text{MnH})_{2} (^{11}\text{A}_{g}) \qquad \Delta E = -46 \text{ kcal/mol}$$
(11)

$$2\mathrm{MnH}_{2}(^{\circ}\mathrm{A}_{1}) \rightarrow \mathrm{Mn}_{2}\mathrm{H}_{4}(^{\circ}\mathrm{X}) \qquad \Delta E = -13 \text{ kcal/mol}$$
(12)

Conclusions

Manganese and rhenium atoms react with H₂ on condensation in excess neon, argon, and pure hydrogen and deuterium to form MH and MH₂ (M = Mn, Re) molecules, which are identified by D₂, HD, and H₂ + D₂ isotopic substitution on the observed fundamental frequencies. The diatomic molecule Mn–H absorbs at 1493.3 cm⁻¹ (neon), 1486.4 cm⁻¹ (pure hydrogen), and 1477.9 cm⁻¹ (argon); however, ReH shows much higher vibrational frequency at 1985.0 cm⁻¹ (argon). DFT calculations support the ⁷Σ⁺ ground state for MnH whereas the ground state for ReH is predicted to be ⁵Σ⁺.

The MnH_2 and ReH_2 molecules are identified from the effect of HD substitution on the spectra and the match of frequencies from DFT calculations. In addition, MnH_2^- is observed in solid neon.

The Mn₂H₄ molecule, formed in solid neon and hydrogen, is computed to have a nonet ground state D_{2d} structure with a Mn–Mn single bond.

The insertion reactions of Mn and Re into H_2 do not spontaneously happen in the low-temperature matrix environment even though these reactions are exothermic. However, spontaneous insertion reactions have been observed for Rh and Pt with hydrogen.^{12,22} No further reactions were observed for MnH_2 with hydrogen, even in pure hydrogen, whereas ReH_2 combines with H_2 to give ReH_4 , which is characterized by two infrared fundamentals and DFT calculations. This work reports the first experimental evidence for neutral rhenium hydride molecules.

Acknowledgment. We gratefully acknowledge support for this work from NSF Grant CHE00-78836 and helpful correspondence with C. W. Bauschlicher, Jr.

References and Notes

(1) Bravo, J. B.; Griswold, E.; Kleinberg, J. J. Phys. Chem. 1954, 58, 18.

(2) Abrahams, S. C.; Ginsberg, A. P.; Knox, K. Inorg. Chem. 1964, 3, 558.

(3) Huang, B.; Yvon, K.; Fischer, P. J. Alloys Compounds 1993, 197, 97.

- (4) Stetson, N. T.; Yvon, K.; Fischer, P. *Inorg. Chem.* 1994, *33*, 4598.
 (5) Bronger, W.; Auffermann, G. Z. Anorg. Allg. Chem. 1999, 625, 1147.
- (6) King, R. B. Coord. Chem. Rev. 2000, 200-202, 813 and references therein.
- (7) Casey, C. P.; Underiner, T. L.; Vosejpka, P. C.; Gavney, J. A.; Kiprof, P. J. Am. Chem. Soc. 1992, 114, 10826.
- (8) Albertin, G.; Antoniutti, S.; Garcia-Fontan, S.; Carballo, R.; Padoan, F. J. Chem. Soc., Dalton Trans. **1998**, *12*, 2071.
- (9) Belkova, N. V.; Shubina, E. S.; Gutsul, E. I.; Epstein, L. M.; Eremenko, I. L.; Nefedov, S. E. J. Organomet. Chem. **2000**, 610, 58.
- (10) Dai, D.; Balasubramanian, K. J. Chem. Phys. 1991, 95, 4284 (Re+H₂).
- (11) Balasubramanian, K.; Taio, D. J. Phys. Chem. 1988, 92, 6259.
- (12) Wang, X.; Andrews, L. J. Phys. Chem. A 2002, 106, 3706 (Rh + H₂).
- (13) Sweany, R. L. Transition Metal Hydrides; Dedieu, A., Ed.; VCH Publishers: New York, 1991.
- (14) Van Zee, R. J.; DeVore, T. C.; Wilkerson, J. L.; Weltner, W., Jr. J. Chem. Phys. 1978, 69, 1869.
- (15) Ozin, G. A.; McCaffrey, J. G. J. Am. Chem. Soc. 1984, 106, 807.
 (16) Van Zee, R. J.; DeVore, T. C.; Weltner, W., Jr. J. Chem. Phys. 1979, 71, 2051.
- (17) Xiao, Z. L.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem. 1992, 96, 636 (Cr, Mo + H₂).
- (18) Chertihin, G. V.; Andrews, L. J. Phys. Chem. 1995, 99, 1214 and references therein (Fe + H₂).

(19) (a) Körsgen, H.; Mürtz, P.; Lipus, K.; Urban, W.; Towle, J. P.; Brown, J. M. J. Chem. Phys. **1996**, 104, 4859. (b) Körsgen, H.; Urban, W.; Brown, J. M. J. Chem. Phys. **1999**, 110, 3861 (FeH₂).

- (20) (a) Chertihin, G. V.; Andrews, L. J. Am. Chem. Soc. **1995**, 117, 6402. (b) Chertihin, G. V.; Andrews, L. J. Phys. Chem. **1995**, 99, 15004 (Zr, Hf + H_2).
- (21) (a) Andrews, L.; Manceron, L.; Alikhani, M.; Wang, X. J. Am. Chem. Soc. 2000, 122, 11011. (b) Andrews, L.; Wang, X.; Alikhani, M.;
- Manceron, L. J. Phys. Chem. A **2001**, 105, 3052 (Pd + H₂). (22) Andrews, L.; Wang, X.; Manceron, L. J. Chem. Phys. **2001**, 114,
- (22) Andrews, E., Wang, X., Wanceron, E. J. Chem. Phys. 2001, 114, 1559 (Pt + H_2).
- (23) Wang, X.; Andrews, L. J. Am. Chem. Soc. 2001, 123, 12899 (Au + H_2).
- (24) Wang, X.; Andrews, L. J. Phys. Chem. A 2002, 106, 3744 (Au + H_2).
- (25) (a) Wang, X.; Andrews, L. J. Am. Chem. Soc. 2002, 124, 5636.
 (b) Wang, X.; Andrews, L. J. Phys. Chem. A 2002, 106, 6720 (W + H₂).
- (26) Wang, X.; Andrews, L. J. Am. Chem. Soc. 2002, 124, 7610 (Sc, Y, La + H₂).
- (27) Burkholder, T. R.; Andrews, L. J. Chem. Phys. 1991, 95, 8697.
- (28) Hassanzadeh, P.; Andrews, L. J. Phys. Chem. 1992, 96, 9177.
- (29) Andrews, L.; Zhou, M.; Wang, X.; Bauschlicher, C. W. J. Phys. Chem. A 2000, 104, 8887 (Mn, Re + CO).

(30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon,

- M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998.
 - (31) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
 - (32) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
 - (33) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
 - (34) Lee, C.; Yang, E.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
- (35) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72,
- 5639. Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.
- (36) Wachters, A. J. H. J. Chem. Phys. **1970**, 52, 1033. Hay, P. J. J. Chem. Phys. **1977**, 66, 4377. Raghavachari, K.; Trucks, G. W. J. Chem. Phys. **1989**, 91, 1062.
- (37) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. *Theor. Chim. Acta* **1990**, *77*, 123.
- (38) Zhou, M.; Zhang, L.; Shao, L.; Wang, W.; Fan, K.; Qin, Q. J. Phys. Chem. A 2001, 105, 5801.
- (39) Chertihin, G. V.; Andrews, L. J. Phys. Chem. A **1997**, 101, 8547 (Mn + O₂).
- (40) Milligan, D. E.; Jacox, M. E. J. Mol. Spectrosc. **1973**, 46, 460. Andrews, L.; Ault, B. S.; Grzybowski, J. M.; Allen, R. O. J. Chem. Phys. **1975**, 62, 2461.
- (41) Zhou, M. F.; Citra, A.; Liang, B.; Andrews, L. J. Phys. Chem. A **2000**, *104*, 3457 (Re + O₂).
- (42) Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.
- (43) Urban, R. D.; Jones, H. Chem. Phys. Lett. 1989, 163, 34; 1991, 178, 295.
- (44) Varberg, T. D.; Field, R. W.; Merer, A. J. J. Chem. Phys. 1990, 92, 7123.
- (45) Balfour, W. J.; Lindgren, B.; Launila, O.; O'Connor, S.; Cusack,
- E. J. J. Mol. Spectrosc. 1992, 154, 177 and references therein.

- (46) Verberg, T. D.; Gray, J. A.; Field, R. W.; Mercer, A. J. J. Mol. Spectrosc. **1992**, 156, 296 and references therein.
- (47) (a) Chong, D. P.; Langhoff, S. P.; Bauschlicher, C. W., Jr.; Walch,
- S. P.; Partridge, H. J. Chem. Phys. **1986**, 85, 2850. (b) Bauschlicher, C. W.; Langhoff, S. R. Transition Metal Hydrides; Dedieu, A.. Ed; VCH
- Publishers: New York, 1991.
- (48) Harrison, J. F. *Chem. Rev.* 2000, 100, 679 and references therein.
 (49) Witborn, C.; Wahlgren, U. *Chem. Phys.* 1995, 201, 357.
- (4) Wildoni, C., Wangreit, C. Chem. 1993, 1993, 201, 357.
 (50) Dai, D.; Balasubramanian, K. J. Mol. Spectrosc. 1993, 158, 455.
- (50) Dai, D., Balasuoramanan, K. J. Mol. Spectrosc. 1993, 136, 455.
 (51) Demuynck, J.; Schaefer, H. F., III. J. Chem. Phys. 1980, 72, 311.
- (51) Demuynek, J., Schaefer, H. F., III. J. Chem. Phys. 1960, 72
- (52) Platts, J. A. J. Mol. Struct. (THEOCHEM) 2001, 545, 111.
- (53) Balabanov, N. B.; Boggs, J. E. J. Phys. Chem. A 2002, 106, 6839.
 (54) Ma, B.; Collins, C. L.; Schaefer, H. F., III. J. Am. Chem. Soc. 1996,
- 118, 870.
 - (55) Wang, X.; Andrews, L. J. Phys. Chem. A 2003, 107, 570.
 - (56) Jacox, M. E. Chem. Phys. 1994, 189, 149.
- (57) Miller, A. E.; Feigerle, C. S.; Lineberger, W. C. J. Chem. Phys. **1986**, *84*, 4127.
- (58) Stetson, N. T.; Yvon, K.; Fischer, P. *Inorg. Chem.* **1994**, *33*, 4598.
 (59) Bayse, C. A.; Hall, M. B. *J. Am. Chem. Soc.* **1999**, *121*, 1348.
- (60) Li, S.; Van Zee, R. J.; Weltner, W., Jr.; Cory, M. G.; Zerner, M. C. J. Chem. Phys. 1997, 106, 2055.
- (61) Blomberg, M. R. A.; Siegbahn, P. E. M. J. Chem. Phys. **1983**, 78, 5682 (NiH₂).
 - (62) Chertihin, G. V.; Andrews, L. J. Am. Chem. Soc. 1994, 116, 8322.
 - (63) Pyykko, P. Chem. Rev. 1988, 88, 563.
- (64) Moore, C. E., *Atomic Energy Levels*; National Bureau of Standards: Washington, DC, 1952; Vol. II.
 - (65) Kang, H.; Beauchamp, J. L. J. Phys. Chem. 1985, 89, 3364.